Gross Chromosomal Rearrangements and Elevated Recombination at an Inducible Site-Specific Replication Fork Barrier
نویسندگان
چکیده
Genomic rearrangements linked to aberrant recombination are associated with cancer and human genetic diseases. Such recombination has indirectly been linked to replication fork stalling. Using fission yeast, we have developed a genetic system to block replication forks at nonhistone/DNA complexes located at a specific euchromatic site. We demonstrate that stalled replication forks lead to elevated intrachromosomal and ectopic recombination promoting site-specific gross chromosomal rearrangements. We show that recombination is required to promote cell viability when forks are stalled, that recombination proteins associate with sites of fork stalling, and that recombination participates in deleterious site-specific chromosomal rearrangements. Thus, recombination is a "double-edged sword," preventing cell death when the replisome disassembles at the expense of genetic stability.
منابع مشابه
Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements
Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have ...
متن کاملRecovery of Arrested Replication Forks by Homologous Recombination Is Error-Prone
Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate...
متن کاملThe F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Sys...
متن کاملUltrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier
Most DNA double-strand breaks (DSBs) in S- and G2-phase cells are repaired accurately by Rad51-dependent sister chromatid recombination. However, a minority give rise to gross chromosome rearrangements (GCRs), which can result in disease/death. What determines whether a DSB is repaired accurately or inaccurately is currently unclear. We provide evidence that suggests that perturbing replication...
متن کاملNucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability
Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 121 شماره
صفحات -
تاریخ انتشار 2005